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The stability of neck propagation and its oscillatory mode have been studied for the cold drawing of 
poly(ethylene terephthalate) films. On the basis of Barenblatt's model considering a temperature rise at 
the neck, the stability has been analysed for neck propagation at constant speed and at constant load. It 
is shown that the stability is directly connected to the sign of the slope of the stress-drawing rate plot; 
unstable neck propagation should be in the region of negative slope. It is argued that the unstable mode 
changes to an oscillatory neck propagation for drawing at constant speed, while the mode in drawing at 
constant load is transformed to the other stable region. Experimental study has confirmed the unstable 
drawing at constant load and the transition of neck propagation rate. Oscillatory neck propagation has 
also been examined by a numerical calculation of non-linear differential equations based on Barenblatt's 
model. The limits of Barenblatt's model are also discussed. 
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I N T R O D U C T I O N  

Plastic deformation of polymers by cold drawing begins 
with the formation of a neck and usually proceeds by 
propagation of the neck. The necking of poly(ethylene 
terephthalate) (PET) films shows oscillatory propa- 
gation; the stress oscillates and the appearance of the 
sample changes periodically during drawing at constant 
speed 1 (Figure 1). During the oscillation, the following 
occurs repeatedly1 : elastic deformation with almost zero 
velocity of neck propagation and then quick propagation 
of the neck with elastic shrinkage of the sample. Hence, 
it is clear that the elastic deformation of the sample is 
coupled with a certain mechanism of neck propagation, 
and causes a periodic change in the rate of neck 
propagation and in the required stress under the 
constraint of constant drawing speed. 

Two different models for the mechanism of oscillatory 
neck propagation have been proposed to date. 

1. Considering a temperature rise caused by the work 
done at the neck, Barenblatt proposed a mathematical 
model for the non-isothermal process regarded as a 
dynamic system in a phase space of stress, drawing 
velocity and temperature at the neck 2. The model 
suggests that the oscillation is due to the instability of 
a stationary solution changing to a limit cycle; namely, 
the process is explained as self-excited oscillation. 

2. Under the condition of constant load drawing, the 
same material shows two jumps in the drawing rate 
at certain critical stresses 3'4 (Figure 2a). On the basis 
of this finding, it has been argued that the oscillation 
is caused by a cycle comprising two different regions 
of rates and jumps (Figure 2a) and hence the upper 
and lower critical stresses determine the magnitude of 
stress oscillation 4. In this model, the effect of tem- 
perature rise at the neck has not been introduced. 
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The second model cannot explain the following facts. 
First, under the condition of drawing at constant speed, 
a region with negative slope exists in the plot of stress 
(a) versus drawing speed (V) 1, as indicated by region 'b' 
in Figure 2b. The neck propagation in this region remains 
stable at first but starts oscillating as the extension 
proceeds (Figure 1). The model cannot explain the 
existence of the stable neck propagation in the early stage. 
Second, it is also well known that the magnitude of 
oscillation changes with the speed of drawing 3: the faster 
the rate, the smaller the magnitude is (Figure 2b). Hence, 
the magnitude is not directly related to the critical stresses 
observed under the condition of constant load. Third, it 
has also been reported that the oscillation and the region 
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Figure 1 Typical load-extension curve for oscillatory neck propa- 
gation. A small fluctuation (oscillation) first appears in the stable neck 
propagation and then grows into the large oscillation 
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Figure 2 Schematic plot of deformation rate v e r s u s  stress for drawing 
at constand load (a) and at constant  speed (b). * ,  Transit ion found 
by Pakula and Fischer3; O ,  recently Yamane e t  a l .  4 found that the. 
region of higher drawing velocity extended to lower stress. In (a), the 
broken arrows show a route of stress oscillation suggested in ref. 4. In 
(b), the double arrows represent the experimental magni tude of stress 
oscillation 

of da/d V < 0 disappear when the sample is immersed in 
water making heat dissipation easy 1. This suggests that 
the process should be considered as non-isothermal. 

For the first model, on the other hand, the last fact 
mentioned above is the premise. Further, for drawing at 
constant speed in the region of da/dV<O ('b' in Figure 
2b), as we shall see below, an analysis based on the model 
predicts stable neck propagation in the early stage and 
stress oscillation in the later stage. For drawing at 
constant load, the analysis suggests unstable neck 
propagation in the region of dV/da<O from the initial 
stage of drawing, as we shall see. The instability of neck 
propagation in the region of d V/da < 0 explains why the 
observed V a plot in Figure 2a lacks the region 'b' in 
Figure 3 corresponding to 'b' in Figure 2b. 

In this way, we can understand the behaviour of cold 
drawing at constant speed and at constant load, on the 
basis of the unified picture presented by the first model. 
In the following, we first discuss experiments to examine 
unstable neck propagation in region 'b' in Figure 3. Then 
we briefly review the first model of Barenblatt. Finally, 
we discuss the stability of neck propagation in the regions 
of d~r/d V > 0 and < 0 and examine oscillating solutions 
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derived from differential equations based on Barenblatt's 
model. The limits of the model are also discussed. 

EXPERIMENTAL 

The samples used were amorphous PET films made by 
Toray Film and Film Products Research Laboratories; 
the films were 120, 300, 800 and 1000~tm thick. 
Rectangular strips of various sizes were cut from the 
films, 2 5ram in width and 5 ~ 1 5 0 m m  in length. For  all 
the experiments described below, samples were prepared 
by drawing at a low rate (,-~ 40 mm min-  1 ) SO as to form 
a neck. 

For the conventional experiments of drawing at 
constant speed, the samples were examined with a 
Shimazu Auto Graph S-100 testing machine: the exten- 
sion rate ranged from 7 to 600 mm min-1 and could be 
changed continuously. Drawing at constant load was 
examined by measuring the extension with the eye. In 
order to re-examine the effect of heat dissipation, the 
samples were wrapped with a tissue soaked in water or 
silicone oil or with aluminium foil. 

To confirm the instability in the region of d V/da < O, 
the equipment shown schematically in Figure 4 was 
attached to the testing machine. The sample was initially 
drawn at constant speed by the testing machine, with 
velocity in the range of da/d V < 0 ('b' in Figures 2b and 
3). The attached equipment allowed the neck propagation 
rate to become faster under the constraint of constant 
load adjusted by the weight. Hence, if neck propagation 
at the initial velocity was unstable and other stable 
stationary states existed for drawing at constant load, 
the propagation velocity could be transformed into the 
stable and faster velocity with the equipment under the 
condition of constant load. This experiment enabled the 
unstable neck propagation in region 'b' of Figure 3 to 
be studied. The drawing velocity after the transformation 
was monitored by the change in voltage between the 
points on a Nichrome coil to which constant voltage was 
applied; one point was fixed and the other was in contact 
with a copper bar which was fastened to the moving 
lower clamp and glided along the Nichrome coil. 
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Figure 3 Hypothetical plot of deformation rate v e r s u s  stress for 
drawing at constant  load. A hidden unstable mode of neck propagation 
is expected, as indicated by the broken line 
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Figure 4 Schematic diagram of equipment attached to testing machine 
and used for examining the stability of neck propagation 
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Figure 5 Plots of stress against deformation rate, obtained in the 
present experiments. The samples are 300,um thick and 3mm wide. 
Drawing conditions: O, constant load in air; O, constant load in 
water; /k, constant speed in water; D, constant speed in air; V, 
transformed by constant load in air as indicated by the arrows 

D I S C U S S I O N  

Experimental results 
The results of the experiments are shown in Figures 5 

and 6. In Figure 5, the results for drawing at both constant 
speed and constant load are plotted on the same figure. 

Conventional drawing experiments, the results of 
which are shown in Figure 5, indicate that the data lie 
on a single straight line except for drawing at constant 
speed in air, while oscillatory neck propagat ion occurred 
only in this mode. The linear plot indicates that 
vocexp(const, a), a relation well known as the activated 
rate process of Eyring 5. 

Water had some additional effects on the texture; in 
water and under strain, crazes were easily formed. But we 

can state that it is not the cause of the rise in stress, for 
the following reasons. First, the crazing must have the 
effect of decreasing the stress, the opposite effect to that 
observed in the experiment. Second, with silicone oil and 
even when the sample was wrapped in aluminium foil, 
the rise in stress was observed without being accompanied 
by crazing, although the rise in stress was not as great 
as that which occurred in water. Third, the stress returned 
to the original value (i.e. without water; A--,  [] in Figure 
5) when the tissue soaked in water was removed from 
the sample; crazes had only a small effect, causing a very 
small fluctuation in the stress around the mean value. 
Hence, it is clear that the sample had not suffered any 
significant change due to the water. These results indicate 
that water, silicone oil and aluminium foil facilitate heat 
dissipation, and water conducted the heat most efficiently; 
probably,  water can wet the sample well and sink into 
it by forming crazes. 

The experiment with the attached equipment clearly 
demonstrated that the neck propagation in the region of 
d V / d ¢ < 0  ( 'b '  in Figure 3) is unstable for drawing at 
constant load. In the experiment, it was observed that 
the velocity of neck propagat ion suddenly increased for 
the samples that were initially drawn at a rate in the 
region of dV/dg<0 .  The transformed rates are plotted 
in Figure 5 (V ,  the transformations are indicated by 
arrows). These data are on the extrapolated curve of the 
rates for drawing at constant speed (r-l) and hence we 
can say that the transformed stable neck propagation 
was in the same state as the necking at constant speed. 
The result means that the neck propagation adjusted to 
the initial rate in d V / d a < 0  was unstable against 
fluctuations and was transformed into the faster steady 
state which was stable under the constant load drawing. 
Such fluctuations in stress can also be observed in 
drawing at constant speed before the neck propagation 
changes to the oscillatory mode. For  the constant speed 
drawing, the fluctuation ends up in self-oscillation, as 
shown schematically in Figure 1. On the other hand, 
under the constraint forced by the attached equipment, 
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Figure 6 Plots of stress against drawing rate for samples: (a) 800#m 
thick and 2mm wide; (b) 300/~m thick and 3mm wide; (c) 120/~m 
thick and 3 mm wide. The bars represent the amplitude of oscillation 
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the neck propagation cannot take the limit cycle and 
needs to be transformed to the stable state of faster 
necking rate; the constraint is that the stress must be 
larger than that decided by the weight put on the 
equipment. 

A review of Barenblatt's model 
The work of drawing converts into heat, and the heat 

produced will raise the temperature at the neck. For the 
drawing of PET films, the heat released by the work has 
been investigated experimentally and it was confirmed 
that all the work converted into heat 6. Such an effect will 
have some influence on the relationship between stress 
and neck propagation velocity 5. The negative da/dV 
obtained with drawing at constant speed ('b' in Figure 
2b) has been explained as the consequence of softening 
of the material due to the temperature rise expected at 
faster drawing rates 7. 

In Barenblatt's model 2, the relationship between stress 
and velocity is assumed to be dependent only on the 
temperature and hence the physical state of neck 
propagation is expressed by those three parameters. This 
means a=a(v,T) or v=v(a,T) and the physically 
allowed set of variables g, v and T should be located on 
a surface represented by a function: 

f(cy, V, T ) = 0  (1) 

in the three-dimensional space of (a, v, T). It should be 
noted that the funct ion,f  (a, v, T)=0 ,  represents the ~r t' 
relation of isothermal necking at temperature T and is 
therefore determined by the characteristics of neck 
deformation. The simplest form of this relation will be 
that of Eyring's rate processS: 

,2, 

where AF and ~ are the activation free energy and volume 
for the process and k is the Boltzmann constant; usually, 
a relation ~a/kT>> 1 holds for the drawing of polymer 
materials 5. 

As a measure of the neck propagation rate, Barenblatt 
introduced a rate, v, independent of the coordinate 
system; 

d 
v = dt (11 + 12) (3) 

where 11 and 12 are the lengths of extended and 
unextended parts of the sample, respectively, in the 
unloaded state. With this rate, the rate of total deformation 
of the sample, V, can be expressed as: 

v+2  da = V (4) 
dt 

where 2 is the elastic compliance of the whole system, 
which gradually becomes larger as the sample becomes 
elongated but, in the time interval of several periods of 
oscillation, can be regarded as a constant parameter 
because 2 increases very slowly 2. The stress a in this 
equation is the apparent stress, namely a=P/SI where 
P is the applied load and S~ is the original cross-sectional 
area (Figure 7). Equation (4) means that the rate of the 
total deformation of the sample is the sum of the rates of 
neck propagation, v, and the elastic deformation of the 
sample, 2(da/dt). 
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For the heat balance in the neck region, Barenblatt 
suggested the following equation: 

dT 
Cocpdt=Q-cpS2v(T- T~,)-f lS(T- To) (5) 

where Q represents heat produced by the work, % the 
heat capacity of unit volume of the material, S 2 the 
cross-sectional area of the neck region, o the volume of 
the neck region, To the ambient temperature, S the lateral 
surface area of the neck region, and fl the heat-transfer 
coefficient which becomes ~2k/8h for a thin film (k is the 
thermal conductivity of the material and h is half the 
thickness of the film); the geometrical factors are shown 
in Figure 7. The first term on the right-hand side of 
equation (5) represents the heat produced by the work 
done at the neck, the second term represents the heat 
removed from the neck region by the propagation of the 
neck, and the last term represents the heat conducted 
from the neck region to the extended and unextended 
parts of the sample 2, assuming the temperature at 
the surface is maintained at T 0. Although Barenblatt did 
not give the explicit form of Q, we can derive it in a 
simple consideration, as follows. Since part of the total 
work per unit time (PV) is stored elastically in the sample 
[).P(dP/dt)], the work done at the neck per unit time 
should be Pv and hence Q is proportional to at'. 

For the convenience of the following analysis, we 
redefine equation (5) as follows: 

dT 
=q(a,  v, T) (6) 

dt 

q(a,v, T ) - a c r v - b v ( T -  T o ) - c ( T -  To) (7) 

where a, b and c are positive constants. There will be an 
additional effect of excess heat released by, for example, 
crystallization, the rate of which will be a function of ~, 
v and T. 

Equations (1), (4) and (6) form the basis of all the 
following analyses. 

da 1 
- ~ I V -  v ( a ,  T ) ]  

dt z 

dT 
= q[a, v(a, T), T] 

dt 

Barenblatt analysed necking at constant speed 

k,2h 

+l ~[ 321 . . . . .  ~t/3 

d ~ 

Figure 7 Schematic representation of neck region. The ratios of the 
width and thickness of extended part to those of unextended part are 
for the actual neck of PET films 
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(F=const .) .  Because of the difficulty of solving non- 
linear equations analytically, he analysed the stability of 
a stationary solution (dg/dt=O and dT/dt=O) which is 
represented by a point of intersection of the following 
surfaces in the space of g, v and T:f (g ,v ,  T)=0,  v= V 
and q(g,v, T)=0.  He proved that the solution becomes 
unstable under a certain condition and that the unstable 
stationary solution changes to a limit cycle on the surface 
o f f ( a ,  v, T )=0 ;  here, dg/dt and dT/dt in equations (4) 
and (6) oscillate. He argued that the limit cycle represents 
the oscillatory propagation of neck. 

Barenblatt has shown that the parameter determining 
the stability is the elastic compliance of the whole system 
2. The stationary solution remains stable if 1/2 is larger 
than a critical value of ~); we will have such a small 2 
for the early stage of drawing. The inverse of 2 decreases 
as the sample becomes elongated and can be smaller than 
f~ in the late stage of drawing, when the solution becomes 
unstable, as observed experimentally (Figure 1). The 
critical f~ can take a positive or negative value and only 
when it is positive can the stationary solution be unstable: 

f~ =- (C~,,a),(C~Tq), -- (0xg).(C3vq). (8) 

where (gTa), means the value of (~g/gT) . . . . . .  t. of the 
surface, f (g, v, T)=  0, for the stationary solution. 

On the basis of the above results obtained by 
Barenblatt, we discuss further details of oscillatory 
neck propagation in the following sections. 

Stability in the regions of dg/dV > 0 and < 0 
It can be shown that the sign of f~ is directly related 

to the sign of da/dV and dV/da in the g-V and V-g 
plots, such as those shown in Figures 2a and b: 

__. 
dV/Iv=cons,, uZ (9) 

I \ dg la=const, 
(10) 

(11) qJ - (Oxq), + (C'~Tg), (O~q), 

where q~ becomes negative for the form of q shown in 
equation (7) and for the obvious relation, ~?rg < 0. Hence, 
this equation means that dg/dV and dV/dg are propor- 
tional to - f L  In the following, we discuss the stability 
of neck propagation in the regions ofdg/dV > 0 and < 0. 

Drawing at constant speed. In the region of da M V > O, 
neck propagation should always be stable because of 
the negative f2. In the region of dg/dV<O and for the 
late stage of drawing (0 < 1/2 < f~), unstable neck propa- 
gation will be transformed into oscillatory propagation. 
These predictions satisfactorily explain the observed 
behaviour of oscillatory neck propagation in Figures 1 
and 2b. 

Drawing at constant load. If we neglect stability, we 
should have the same stationary solution for drawing 
both at constant speed and at constant load, and hence 
the V-g and g-V plots, as shown in Figures 2a and b, 
should be identical except for the stability of the solutions. 
Actually, Figure 2a, the plot of the observed steady state 
solutions for constant load drawing, indicates an S- 
shaped curve, as in the g-V plot if Figure 2b, with the 
disappearance of the region dV/dg < O. 

For drawing at constant load, it can be shown that 

the sign of f~ again determines the stability of the steady 
state solution; here, irrespective of the value of 2, positive 
f~ means an unstable and negative ~ means a stable 
stationary solution. Therefore, the stationary solution in 
the region ofdV/dg>O should be stable and the solution 
in the region of dV/dg <0 must be unstable, irrespective 
of the value of 2. This explains why the region 'b' in 
Figure 3 could not be observed before. 

In the present experiment, the velocity was initially 
forced to the unstable value and we observed a sudden 
change in the velocity. As shown schematically in 
Figure 3, the hidden region of dV/da<O is coexisting 
with the two stable regions of dV/da>O. Therefore, the 
result of the present experiment is explained as the 
transformation of the velocity to the faster and stable 
stationary state by moving along a curve off(go, v, T) = 0, 
limited by the constant stress go. Under the condition of 
constant load, oscillatory propagation is impossible 
because the locus is constrained on the one-dimensional 
curve f ( g  o, v, T)=0.  

Oscillating solution for equations (1), (4) and (6) 
In this section, we try to obtain the numerical solution 

for the simultaneous differential equations (1), (4) and 
(6). For this purpose, we need to define the surface 
f (g,  v, T)=0.  However, at present, we have no informa- 
tion about the effect of crystallization which occurs in 
region 'c' in Figure 2b and during the oscillatory neck 
propagation 1. In the following, we assume Eyring's rate 
process with single stage (equation (2)) for the relation- 
ship between a, v and T and equation (7) for the heat 
balance; namely, we neglect the effect of crystallization. 
Then, we will see whether crystallization is crucial for 
oscillatory neck propagation. 

The parameters in equations (2) and (7), v o, AF, ct, a, 
b and c, were determined in the following way. Firstly, 
the activation volume ~ was determined from the slope 
of the linear portion in Figure 5 of the present experiment. 
In order to obtain v o and AF, we need to know the 
temperature dependence. These data were available from 
the experiments of Pakula and Fischer 3 (Figure 8). 
The data in Figure 8 were for low velocity drawing 
(5 mm min -1) so that the effect of temperature rise will 
be negligible. AF was determined from the interception 
with the y-axis. The value of Vo was normalized for the 
present data with the determined values of ct and AF. 
The values of a, b and c were estimated by using the 
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Figure 8 Plots of stress against ambient temperature. The data are 
from ref. 3. Cylindrical samples with diameter of 1 mm were drawn at 
the rate of 5 mm min- 1 
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Table 1 Constants used in the numerical calculation 

~'o AF ~ a b c 
(cms 1) (erg) (nm 3) ( K c m s  -1) (cm -1 ) (s -1 ) 

2.25 x 1072 8.17x 10 12 3.39 1.26 x 10 -~ 78 13 

20gma [ M P a ] ~  8 

30 ~ 6 

O 3 0 ~  Lo3g (v) 
T [K] 340 [mm/min] 

[50 

30 

300 

b 

3 6 

v) 
T [K] 340 [mm/min] 

201gma [ N P a ] ~  C 

30 ~ 6 

0 3 0 ~  Lo3g (v) 
T [K] 340 [mm/min] 

Figure 9 Three-dimensional plots of (a) equation (2); (b) q((r, v, T) = 0, 
(c) intersecting line of those surfaces. The intersecting line and symbols 
(O) represent the steady state solution (d~r/dt = 0 and d T/dt =0) 

following values for the dimensions of the neck region 
(Figure 7) and for the physical parametersS: h = 150/~m, 
t=3mm,  d=50ym,  Cp=2.74x107ergcm-3K -1 and 4 1 1 1 k= 1.47 x 10 ergs- cm- K-  , These determined values 
are shown in Table 1. 

First, we shall obtain the stationary solution for 
equations (2), (4), (6) and (7): dT/dt=O and d(r/dt=0. 
The solutions are given by the intersecting line of the 
surfaces cr=a(V,T) and q(~r,V,T)=O of Figures 9a 
and b, respectively, and are shown in Figure 9c. The a-V 
plots of the solutions are shown in Figure 10. The plot 
shows an S-shaped dependence of a on log(V). The 
calculated results are compared with the experimental 
data in Figure lOb, with changing the values of para- 
meters, a, b and c. As seen in Figure lOb, the steep rise 
in a with log(V) in region 'c' cannot be reproduced by 
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the calculation. In region 'c', the extended part becomes 
opaque and crystallization occurs during necking. There- 
fore, this steep rise may be due to crystallization; 
although crystallization produces heat and may decrease 
the stress further, it will also modify the function 
f (a ,  v, T) = 0 and hence crystallization may cause harden- 
ing of the necked region and so may be able to increase 
the stress. Further study is required on the effect of 
crystallization. 

Second, we shall see the time evolution of the solutions 
under constant speed of drawing. For this purpose, the 
parameter ), is kept constant. This assumption is justified 
because the elastic compliance of the sample increases 
very slowly compared to the time interval of the period 
of oscillation of neck propagation; we will see later, by 
direct numerical calculation, that the change in ), does 
not cause any essential difference in the results. The 
Runge-Kutta method with variable step size was used 
for the numerical calculation. 

We first confirm the stable neck propagation in regions 
'a' and 'c' in Figure lOa. The initial value of a was set 
to be smaller or larger than the values for the steady 
states. The results shown in Figure 11 clearly indicate 
stress reaching the value of the stable steady state. The 
stationary state was stable even with a very large value 
of ;, (= 100mm MPa-  1). 

The typical behaviour in region 'b' in Figure lOa 
(d~r/dV<0,~>0) is shown in Figure 12 for different 
values of 2. The critical value, )-c(= 1/f~) calculated from 
equation (8), is 0.07 mm MPa 1 for the steady state. The 
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Figure 10 Plots of the stationary solutions for equations (2), (4) and 
(6). Temperatures at the neck are shown in (a). The curves, 1, 2 and 
3 in (b) are for (a, b, c) shown in Table 1, for (a, b, 4c) and for (a, 2b, 
4c), respectively. The experimental data (©) are also plotted in (b) 
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Figure 11 Plots of calculated a as a function of time for drawing at 
constant speed. The drawing rates, V, are (a) 1 m m m i n - 1  and (b) 
104 mm rain-1. These rates are in regions 'a' and 'c' in Figure lOa. The 
values of tr are initially set to differ from the values in the steady states 
and the system eventually returns to the steady state 
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Figure 12 Plots of calculated cr as a function of time for drawing at 
constant speed. The rate of drawing is 50 mm min-1 in region 'b'  in 
Figure lOa. The parameter 2 takes the values of 0.065, 0.09 and 0.3 for 
(a), (b) and (c), respectively. The critical value of 2 calculated from 
equation (8) is 0.07 mm M P a -  1. In (a), the initial a is set to differ from 
the steady state tr, but in (b) and (c) the initial values of (tr, v, T) are 
set to be the values of the steady state 

stress oscillation for 2 > 2c is clearly seen in Figures 12b 
and c. Here, in equations (2) and (7), the effect of 
crystallization was neglected. We see that crystallization 
during necking is not the necessary condition for stress 
oscillation, but it will be subsidiary to quick neck 
propagation and its resultant temperature rise. The 
period of oscillation in Figure 12 increases with 2, as was 
observed experimentally:. 

The changes in v and T during stress oscillation are 
shown in Figure 13. The oscillatory behaviour of tr, v 
and T is very similar to the experimental results of a, v 
and released heat; these experimental data have been 
reported by Andrianova et al. 1"6. The released heat is 
expressed as c(T-To)  in equation (7) and hence is 
proportional to the increase in temperature. 

The limit cycle of the self-excited oscillation is plotted 
in Figure 14 where a trajectory from the unstable 
stationary state is also shown. The cycle is clockwise and 
the symbols (O) divide the limit cycle by an equal time 
interval; the process of increasing a occurs very slowly 
compared to that of decreasing a. As shown in Figure 
14b, the limit cycle can be divided into four sections by 
the curves (1) v= V, and (2) q(a,v, T)=0.  The points of 
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Figure 13 Plots of calculated a, log(v) and T as a function of time. 
The rate of drawing is 50 mm min-1 in region 'b'  in Figure lOa. The 
parameter 2 is 0.2 and is larger than the critical value of 0.07 
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Figure 14 Three-dimensional plots of calculated a, log(v) and T for 
the same drawing rate and 2 as in Figure 13. The loop represents a 
limit cycle repeated in a clockwise direction. A trajectory from the 
unstable steady state is also shown in (a). The symbols (O) in (a) divide 
the limit cycle by an equal time interval. The curves 1 and 2 in (b) 
represent v= V (da/dt=O) and q(a, v, T ) = 0  (dT/dt=O) on the surface 
of equation (2). In the regions A, B, C and D in (b), the signs of 
(da/dt, dT/dt) are ( - ,  +) ,  ( - , - ) ,  ( + ,  - )  and ( + ,  +) ,  respectively 
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Figure 16 Typical oscillatory behaviour in stress. The sample is 
100011m thick and 3ram wide. The early stage of stress oscillation is 
shown in (a) and the later stage in (b). The change in the period and 
the occurrence of period doubling are clearly seen 

intersection of the limit cycle with those curves represent 
(1) d a / d t = 0  and (2) dT/dt=O. The sign of da/dt and 
dT/dt changes alternately for each section and this 
change maintains the limit cycle. 

The amplitude of oscillation in a is obtained for several 
drawing velocities and is plotted in Figure 15. The 
amplitude is almost independent of V. The change in the 
amplitude has been clearly observed experimentally 
(Figures 2b and 6) but could not be reproduced by the 
present calculations. The change in the amplitude may 
be due to the effect of crystallization, which was neglected 
in the calculation. However, it may also be possible that 
Barenblatt 's model itself has an essential defect for 
explaining the experimental result, as discussed in the 
following. 

Limits of Barenblatt's model 
1. As clearly seen in Figure 6 especially for thicker 

samples, oscillatory necking is also observed for 
da/dV>O, although the present analysis based on 
Barenblatt's model can predict oscillation only in the 
region of da/dV < O. 

2. As reported by Andrianova et al. 1, the period of 
oscillation doubles in the late stage of drawing, namely 
for large 2 (Figure 16). Such period doubling can be 
expected for a dynamic system having more than three 
independent variables 9, but cannot be expected for 
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the present model in which a, v and T are related by 
the function, f (a ,v ,  T ) = 0 ,  so that only two variables 
are independent. It should be noted that the system 
may degenerate into a chaotic mode for still larger 2 
by way of a successive period doubling 9. 

This evidence, especially the latter, indicates the 
following two possibilities. First, at least one more 
variable may exist and at least three variables are 
independent. The second possibility is that the relation 
f ( a ,  v, T ) = 0  does not hold for the oscillatory propaga- 
tion of the neck, although the relation explains the 
stationary neck propagation. Such mechanisms may also 
cause the change in the amplitude of oscillation shown 
in Figures 2b and 6. 

The parameter 2, which was kept constant in the above 
calculation, may be a candidate for the additional 
variable causing period doubling, because it gradually 
increases with extension of the sample. To see the effect 
of the increase in 2, we solve the simultaneous differential 
equations (2), (4), (6) and (7) with the following equation: 

d2 x 

= t.o v (l 2) 
dt 

where )~o is a constant. The typical result is shown in 
Figure 17. We can see that the oscillation starts for ). 
greater than 1 / f~ (=0 .07mmMPa  1) and the period 
becomes longer with increasing 2. However, we could 
not see the period doubling or any essential differences 
from the results given above. We need to seek other 
possibilities. 

Even though the above evidence is beyond the scope 
of Barenblatt's model, the present analysis provides a 
good explanation of the basic feature of the oscillatory 
propagation and will remain correct in a restricted sense; 
none of the above can be explained by the second model 
mentioned in the Introduction. Further investigations, 
both theoretical and experimental, are required along 
the lines of Barenblatt's model. 

CONCLUSIONS 

Barenblatt's model of oscillatory neck propagation has 
been briefly reviewed. The model comprises equations 
describing both the characteristics of isothermal neck 
propagation and heat balance in the neck region. For 
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Figure 17 Plots of calculated 6 as a function of time. In the calculation, 
the parameter ), changes according to equation (12), where the constant 
)-0 is set to 5.0 × 10 5. The drawing rate is 50 mm rain ' and the critical 
2 is 0.07 
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drawing at constant speed, the additional condition of 
maintaining constant speed is also required. Oscillatory 
neck propagation is described as a self-excited oscillation 
generated by the coupling of elastic deformation of the 
sample and the temperature-dependent velocity of neck 
propagation. 

On the basis of Barenblatt's model, the stability of 
neck propagation has been discussed in connection with 
the slope of the a - V  plot. It has been shown that neck 
propagation becomes unstable in the region of negative 
slope. For drawing at constant speed, the stability is also 
dependent on the elastic compliance of the system and the 
oscillatory neck propagation starts in the later stage of 
necking. For drawing at constant load, neck propagation 
in the unstable region is unsteady from the initial stage 
of necking. For constant load drawing, oscillatory neck 
propagation is impossible because of the constraint of the 
constant load, and hence drawing in the unstable region 
is not observed by conventional experiments. 

The unstable neck propagation in the region of 
negative slope in the V-a plot by constant load drawing 
has been examined experimentally by a conventional 
testing machine modified to allow change in neck 
propagation velocity while keeping a constant load. The 
velocity was initially forced to be in the unstable region 
and the instability was clearly confirmed by observation 
of a sudden change in the neck propagation velocity to 
a faster and stable mode. 

Simultaneous non-linear equations based on Baren- 
blatt's model have been derived and solved numerically. 
The steady state solutions gave an S-shaped curve for 
the a - V  plot and, in the region of negative slope, the 
time development of solutions showed self-excited oscilla- 
tion in stress, neck propagation velocity and temperature. 
These results reproduce well the experimental results 
reported in the literature, although the equations neglect 
the effect of crystallization which occurs at high drawing 
rates and during oscillatory necking. This means that 
crystallization during necking will be a subsidiary effect 
to temperature rise by high drawing rates. 

The present analysis clarifies the basic feature of 

oscillatory neck propagation but cannot explain all the 
experimental results. First, the steady state solution could 
not reproduce the steep rise in stress required in the a-V 
plot at high drawing rate. Second, the numerical solutions 
did not exhibit strong dependence of the amplitude of 
stress oscillation on drawing rate. Third, the well 
known behaviour of period doubling in stress oscillation 
cannot be obtained by the present system. It is probable 
that some of these can be explained by the effect of 
crystallization which was neglected in the present analysis; 
experimental studies with non-crystalline samples are 
required to investigate this issue. On the last point, 
however, Barenblatt's model may have an essential 
defect. 
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